Nedávné fiasko s prvními výsledky detektoru LUX (Large Underground Xenon detector) jen zjitřilo rány, které v dnešní fyzice a vůbec chápání světa otevírá temná hmota. Jak už asi všichni vědí, projekt LUX zatím žádnou temnou hmotu neobjevil a naopak prakticky vyloučil jednu z nejvíce preferovaných hypotéz o tom, co vlastně temná hmota je. Stále větší bezradnost nad nepolapitelností temné hmoty, o temné energii raději ani nemluvě, vede na jedné straně k stále častějšímu odmítání těchto pěkných fantasy konceptů mezi astrofyziky a zároveň také k vynořování ještě přízračnějších představ o povaze reality.
Jednou z takových snových představ je i temný zvuk, obdoba baryonových akustických oscilací v ranném vesmíru. Pokud by existoval, tak by jej snad bylo možné vystopovat a konečně tím temné hmotě vytřít zrak. Mezi horkými kandidáty na temnou hmotu dlouhodobě zaujímají přední místo těžké a netečné částice WIMPy (Weakly Interacting Massive Particles), i když negativní výsledky detektoru LUX s jejich pozicí poněkud otřásly. Tyto nanicovaté wimpy by měly s normální baryonovou hmotou reagovat jen velmi laxně, pouze prostřednictvím gravitace a také slabé jaderné síly. A podle většiny modelů by wimpy neměly mít chuť ani se navzájem sdružovat a neměly by vytvářet složitější struktury, tak jak to dělá běžná hmota.
Jenže jeden tým astrofyziků letos navrhl, že to tak úplně neplatí. Podle jejich modelu zhruba 15 procent částic temné hmoty vytváří atomy, tedy temné atomy, které se pak seskupují do temných molekul a také produkují temné záření. Výsledkem toho všeho by pak mohly být temné galaxie plné temných hvězd, které by tvořily vlastně celý temný vesmír, na dosah ruky a zároveň velice nedosažitelný. Této pozoruhodné šílenosti se chytil Francis‑Yan Cyr‑Racine z Laboratoře tryskového pohonu v kalifornské Pasadeně. On a jeho kolegové se domnívají, že bychom měli být schopni vystopovat ozvěny existence temného vesmíru v těch největších strukturách toho vesmíru, který důvěrně známe, pokud to nebyla jenom honba za přeludem.
Když chladla polévka plazmy ranného vesmíru, tak se v ní šířily synchronizované vlny, podobné zvukovým vlnám našeho světa. Když se 380 tisíc let po Velkém třesku vyzářilo reliktní mikrovlnné záření, tak se do něj tyto baryonové akustické oscilace otiskly. Pokud určitá část temné hmoty vytváří temné atomy, tak by měly v ranném vesmíru podobným způsobem vytvořit temné akustické oscilace, tedy temný zvuk. Podle Cyr‑Racineho jej nemůžeme pozorovat přímo, mohli bychom ale zaznamenat stopy gravitace, kterou by vlny temného zvuku působily na běžnou baryonovou hmotu.
Cyr‑Racine pátrali po ozvěnách temného zvuku v nových datech sondy Planck a také v datech prohlídky galaxií BOSS (Baryon Oscillation Spectroscopic Survey), který je součástí 3. Sloanovy digitální prohlídky oblohy (Sloan Digital Sky Survey, SDSS III.) na observatoři Apache Point v Novém Mexiku. Ani v reliktním mikrovlnném záření, ani v kupách galaxií ale doposud nic nenašli. Prý to ještě není definitivní konec a temná hmota vytvářející temné atomy stále ještě může existovat. Teď to ale vypadá, že takové temné hmoty bude maximálně pět procent z celkového obsahu temné hmoty ve vesmíru. Víc se dozvíme až s ještě citlivějšími průzkumy hlubin dávného vesmíru.
Literatura
NewScientist 7. 11. 2013, arXiv:1310.3278.