Situace v samotné elektrárně
Na rozhraní léta a podzimu se podařilo dosáhnout další významný pokrok při řešení havárie ve Fukušimě I. Výrazně se zefektívnilo čištění radioaktivní vody. Odstraňují se z ní nejen radioaktivní prvky, ale také sůl a další nečistoty. To umožnilo zvýšit množství vody, které se vstřikuje do jednotlivých reaktorů a snížit jejich teplotu. Větší objem vody se také mohl dodávat různými systémy do různých míst reaktoru s cílem najít nejefektivnější variantu jejich chlazení. Už více než měsíc se tak daří držet teplotu prvního a třetího reaktoru pod hodnotou 100 °C. Poslední z trojice postižených, reaktor číslo dva, se dostal pod teplotu 100 °C koncem září. Začátkem října měl první a třetí reaktor teplotu v různých místech něco málo přes 70 °C a druhý reaktor pod 85 °C. Tuto teplotu udržuje chladící voda, jejíž objem je u prvního reaktoru necelé čtyři tuny za hodinu a u druhého a třetího reaktoru něco přes deset tun. Současný tepelný výkon, který vzniká rozpadem radioaktivních prvků v palivu, je zhruba 0,6 MW u prvního a 0,9 MW u zbývajících dvou reaktorů. Pro zajímavost si připomeňme, že například koncem března byla teplota prvního reaktoru okolo 400 °C. Čidla pro měření teploty jsou na vnějším povrchu reaktorů, ale plánuje se jejich umístění i do prostoru uvnitř reaktorů, což by samozřejmě poskytlo více přesnějších informací. Zlepšují se také systémy pro měření tlaku a hladiny vody v reaktorech s cílem zjistit, zda jsou všechny jejich části chlazeny dostatečně efektivně a zda se opravdu podařilo dosáhnout stavu studeného odstavení reaktorů.
Díky snížení teploty se radikálně omezilo vypařování. Už dříve se chlazením bazénů s vyhořelým palivem přes tepelné výměníky podařilo srazit jejich teplotu ke třiceti stupňům a níže. Monitoring ze vzduchu pomocí infračervené kamery potvrdil, že v budovách reaktorů již nejsou místa s horkou párou, která nad elektrárnou netvoří bílá oblaka. Tím se dramaticky snížily úniky radioaktivity a zlepšily pracovní podmínky v areálu i uvnitř reaktorových budov, což umožňuje zahájit práce i tam. Že se v nich situace výrazně zlepšila, potvrdily i roboty opětně vysláni do prvního patra budovy prvního reaktoru (popis budovy a umístění pater je zde). Při předcházejícím průzkumu začátkem června byl ve zkoumaných místech zaznamenán velký únik páry a velmi silná radiace s dávkovým příkonem až 3000 milisievertů za hodinu. Při nové návštěvě 13. října už žádný únik páry zjištěn nebyl a radioaktivita klesla na pětinu. Teplota byla něco málo přes 20 °C a vlhkost mírně přesahovala 40 %. I v těchto částech budov tak mohou nejdříve roboty a postupně i lidé pracovat na likvidaci následků havárie.
Radioaktivní voda v elektrárně
Efektivnější čištění radioaktivní vody umožnilo zvýšit i její odčerpávání ze suterénních prostor. Je to možné nejen díky větší kapacitě dekontaminačních a odsolovacích zařízení, ale také díky vzrůstající kapacitě zásobníků pro skladování slabě i silně radioaktivních kapalin. Hladina vody v podzemních částech budov tak klesla na dostatečně nízkou úroveň. Ani v případě vydatných srážek nebo dlouhodobého výpadku dekontaminačních zařízení tak nehrozí její přelití do moře. Navíc období dešťů už skončilo a elektrárna v pořádku přestála i přechod tajfunu.
V současné době nastává období se sušším počasím, které může představovat jiné riziko. V případě vysušení půdy by mohl vítr zvedat z areálu elektrárny prach obsahující radioaktivní částice a roznášet je do širšího okolí. Částečně tomu brání postřik polymery, který se prováděl před začátkem léta a v létě. K tomu nyní přibylo provlhčování povrchu rozprašováním vody odčerpávané z pátého a šestého bloku. Pochopitelně až po dekontaminaci, odsolení a zbavení nečistot. Tato voda byla i na začátku jen slabě radioaktivní, protože pochází z cunami a dešťových srážek, jež zatekly do narušených budov. Před dalším využitím je testována a její radioaktivita je nižší než limita stanovená pro vodu v nádržích využívaných pro koupání.
Práce na reaktorových budovách
Nad prvním reaktorem se dokončuje dostavba náhradní horní části reaktorové budovy, jež by měla zabránit případným únikům radioaktivity z tohoto bloku. Postup prací dokumentují snímky. Připravují se podmínky pro vybudování stejných konstrukcí i nad třetím a čtvrtým blokem. Reaktorová budova druhého bloku poškozena nebyla. V rámci těchto činností se také odstraňují trosky. Aby nepadaly do bazénů s vyhořelým palivem, jsou na jejich hladinu
umisťovány plovoucí konstrukce.
Podmínky pro práci v různých částech reaktorových budov se rychle zlepšují. Prostory se dekontaminují a uklízejí. To usnadňuje kontrolu různých systémů, obnovu jejich činnosti a úpravu tak, aby mohly být využity ke stabilizaci situace v elektrárně. Jde například o předělávání chladícího potrubí a jeho napojování na systémy dodávající dekontaminovanou vodu. Stejně tak je nutné vhánět do reaktoru dusík, který zabraňuje možnému výbuchu vodíku. V některých částech potrubního systému byly nalezeny kapsy vyplněné vodíkem, který se tam nahromadil v prvních dnech po havárii. Postupně se ho podařilo odsát a nebezpečí eliminovat. Tato bezpečnostní opatření pozdržela rozřezání příslušného potrubí na prvním bloku a instalaci zařízení, které vychytává radioaktivní látky nacházející se uvnitř primárního kontejnmentu. Proto operaci, která je důležitým krokem ke snížení radioaktivity uvnitř kontejnmentu, bylo možné provést až nyní. Snížení radioaktivity ve všech částech reaktorové budovy je nutnou podmínkou pro zahájení likvidace zničených reaktorů.
V rámci opatření zajišťujících ochranu elektrárny před možnými cunami v budoucnosti se staví vlnolamy, které zadrží vlny a zmenší jejich sílu. Pro ochranu moře se naopak buduje stěna, jež zabraňuje průniku radioaktivní vody z podzemí. Důležitou součástí opatření na ochranu proti nové živelné katastrofě je i umístění náhradních mobilních generátorů elektřiny, pump a stříkacích zařízení na bezpečných místech a nácvik jejich využití v případě nutnosti. Právě v posledních dnech proběhlo rozsáhlé cvičení záchranných složek v areálu elektrárny.
Likvidace zničených reaktorů
Postup prací uvnitř reaktorových budov a zlepšování situace umožňuje uvažovat o budoucí likvidaci zničených reaktorů. Odborníci nejen z firmy TEPCO připravují přesnější plán prací, které bude nutné vykonat. Vychází při tom ze zkušeností, které se získaly při likvidaci reaktoru jaderné elektrárny Three Mile Island. V každém případě však půjde o velmi náročnou a dlouhodobou práci. Předpokládá se, že nejdříve se pomocí speciálních jeřábů vyčistí horní části reaktorových budov a bazény s vyhořelým palivem od napadaných trosek. Pak se vyjmou palivové články, které jsou zatím uskladněny v bazénech jednotlivých reaktorů a přemístí se do centrálního bazénu. Potřebná zařízení a hlavně kontejnery bude třeba vyrobit. Následně se budou pomocí dálkově ovládaných dozimetrů hledat místa porušení primárního kontejnmentu. Situace uvnitř něho se bude studovat pomocí nepřímých metod, ultrazvukem nebo zářením gama. Nalezená poškozená místa se musí opravit, aby byly prostory primárního kontejnmentu hermeticky uzavřeny a mohly se zaplnit vodou. Ta bude vyplňovat primární kontejnment a tlakovou nádobu reaktoru a bude fungovat jako stínění radiace z jaderného paliva. Průběžně bude potřeba zjistit v jakém stavu toto palivo je a kde přesně se nachází jeho roztavená část. Po naplnění vodou bude možné sejmout horní víko reaktorové nádoby. Postupně pak bude možné odstranit poškozené palivové články a roztavené palivo z reaktorové nádoby i primárního kontejnmentu.
Připomenutí prvních dní
Dosti často se v diskuzích objevují názory, co mohli a nemohli Japonci udělat v prvních hodinách a dnech po cunami. Dá se předpokládat, že se určitě ukáže řada selhání na úrovni koordinace, řízení i samotných činností v elektrárně po zemětřesení. Na druhé straně je třeba si uvědomit, že se jednalo o průmyslový objekt, kterým se prohnala vlna cunami. Ta zničila a zalila slanou vodou nejen dieselové agregáty, ale i další důležitá zařízení. V provozu zůstaly jen baterie, jenže ty fungují jen určitou dobu a mají omezený výkon. Nemohou nahradit dodávku proudu z vně nebo dieselagregáty. Takže také chlazení, které bylo možné, a odvod tepla z reaktoru byly jen nedostatečné a založené hlavně na parních turbínách, přičemž jak teplota reaktoru rostla, množství vody klesalo. I osvětlení a zásobování elektřinou v areálu bylo na baterie a v havarijním režimu. Navíc nouzové chlazení u prvního reaktoru mělo pravděpodobně problémy už na začátku po zásahu cunami.
Když se zjistilo, že na místě jsou všechny dieselové agregáty zničeny, byly k elektrárně vyslány mobilní zdroje, ale kvůli problémům na silnicích způsobených zemětřesením a cunami, se nemohly dostat k cíli včas. A kvůli velké hmotnosti těchto mobilních zdrojů je nebylo možné dopravit pomocí vzdušných sil.
Situace i v samotné elektrárně byla komplikovaná. Cesty v areálu elektrárny byly poničeny cunami a pokryty troskami. Všude byla voda, místy vytvářející i dost velké bazény. Přeprava hasících zařízení, která by umožňovala stříkat do reaktoru vodu z vně, tak trvala velmi dlouho. Navíc už byl večer a noc, takže pracovníci měli pro práci extrémně špatné podmínky. A to za situace, kdy poměrně silné seizmické dotřesy byly na denním pořádku a nikdo nemohl vědět, jestli nenastane opět větší zemětřesení s následnou cunami. Pracovníci se po mnoho dnů museli střídat v silně radioaktivním prostředí a pohybovat mezi troskami budov poškozených vodíkovými výbuchy.
A také je třeba si uvědomit, že v té době bylo v Japonsku zničeno obrovské množství domů v rozsáhlé oblasti. Lidé umírali a záchranné týmy se k nim nemohly dostat. Kdyby se začalo rozebírat, kolik lidí zemřelo proto, že se k nim včas nedostala pomoc záchranářů, tak dojdeme asi k dost deprimujícím číslům. Do některých oblastí se auta se zásobami či helikoptéry dostaly až po řadě dní. I to je třeba vzít v úvahu při posuzování možností, které v dané situaci byly.
Je jasné, že se určitě udělala i při reakci na cunami řada chyb, že ani komunikace mezi pracovníky, jejich nadřízenými, vládou a složkami záchranného systému nebyla ideální. Přesto se podařilo provést včas a spořádaně evakuaci civilního obyvatelstva z okolí elektrárny. Což bylo asi to nejdůležitější.
Vývoj situace v okolí elektrárny.
V dřívějších článcích jsme sledovali dozimetrickou situaci v areálu elektrárny na dvou místech. Tam od začátku srpna za zhruba dva měsíce klesl dávkový příkon o něco více než deset procent a začátkem října byl u hlavní brány 29 mikrosievertů za hodinu a u západní pak 11 mikrosievertů za hodinu. V Tokiu klesla střední hodnota dávkového příspěvku od Fukušimy za stejnou dobu také zhruba o něco více než deset procent a jeho celková hodnota je nyní okolo 0,055 mikrosievertů za hodinu. Samozřejmě, že se mohou objevovat místa s vyšší koncentrací nahromaděného radioaktivního spadu s lokálně vyšší hodnotou dávkového příkonu. Je to hlavně v okapech, kanálech nebo odpadních strouhách.
Sledování dozimetrické situace a dekontaminace zasažených území se stává stále důležitější právě v době, kdy se začínají vracet alespoň někteří z evakuovaných. Už v minulém článku bylo konstatováno, že v návaznosti na dokončení první etapy stabilizace situace v elektrárně a odstranění rizika nového většího úniku radioaktivity do vzdálenějších oblastí, vláda přistupuje k odvolání omezení, která se týkala pásma ve vzdálenosti mezi dvaceti a třiceti kilometry od elektrárny. Praktické kroky k realizaci zrušení omezení však podmínila vypracováním plánů měření radioaktivity a postupu dekontaminace v jednotlivých oblastech na tomto území. Během září místní úřady tyto plány vypracovaly a navíc značně pokročily v dekontaminaci hlavně v okolí školních zařízení. Při čištění stěn a střech budov, kanálů a stružek, chodníků a cest, či odstraňování svrchní vrstvy půdy v kritických místech pomáhají nejen místní obyvatelé, ale i dobrovolníci z jiných oblastí. Cílem je, aby dozimetrická situace právě v těchto místech byla taková, že příspěvek k roční dávce při pobytu v školním zařízení a jeho okolí nepřekročí jeden milisievert (přepočteno na celoroční pobyt v něm). Vytvořily se tak podmínky pro návrat evakuovaných alespoň do těchto oblastí.
V současné době tak dochází k otevírání prvních těchto zařízení. Právě dnes se znovu otevřela řada škol v postižené oblasti. Z jedenácti základních a středních škol v městě Minami Soma vzdálené od elektrárny 20 km se jich otvírá pět. V některých je dětí zatím málo. Ale dá se předpokládat, že se jejich počet bude zvyšovat, jak se alespoň část ze zhruba 29 000 obyvatel, kteří byli z těchto oblastí evakuováni, bude vracet v následujících týdnech a měsících domů.
Stále je zakázán návrat do oblastí vzdálených od elektrárny do dvaceti kilometrů. Tam se alespoň zjednodušil postup při návštěvách obyvatel v jejich domovech. Práce na rekonstrukci a dekontaminaci těchto území samozřejmě pokračují.
Návrat lidí do zón vzdálených od elektrárny více než 20 km bude probíhat na základě postupu dekontaminačních prací a dozimetrické situace v konkrétních místech. Připomenu, že jde o oblasti, kde byl v minulosti dávkový příkon způsobující roční dávku větší než 20 mSv (zhruba dávkový příkon větší než 2,3 mikrosievertů za hodinu). Možnost návratu do 20km zakázané zóny je podmíněna ještě dalším zlepšením situace v elektrárně. Zatím se předpokládá začátkem příštího roku. Pro co nejpřesnější sledování dozimetrické situace se provádí detailní měření evakuovaných zón. Výsledek monitoringu více než dva a půl tisíce míst ukázal velké rozdíly. Největší dávkový příkon je v městě Okuma vzdáleném od elektrárny pouhý jeden kilometr. Zde byla hodnota 139 mikrosievertů za hodinu. V nejhůř zasažených oblastech na severozápad od elektrárny se našla místa s dávkovým příkonem 19 mikrosievertů za hodinu ještě ve vzdálenosti 32 km od elektrárny. Naopak směrem na sever byly hodnoty dávkového příkonu menší než jeden mikrosievert za hodinu už ve vzdálenosti pouhé 3 km od elektrárny.
Dekontaminace a opatření na ochranu zdraví
Právě v posledních měsících vláda i místní úřady významně postoupily ve vypracovávání konkrétních postupů při dekontaminaci zasažených oblastí. Důležitým rozhodnutím je, že vláda bude finančně podporovat dekontaminační práce v oblastech, kde je příspěvek od Fukušimy I k celoroční dávce větší než jeden milisievert za rok. Původně se uvažovalo jen o oblastech s příspěvkem přesahujícím 5 mSv. Ukázalo se, že hlavní část kontaminace je zatím jen v tenké vrstvě zeminy na povrchu a stačí tak odstranit jen prvních maximálně 5 cm půdy. Důležité je hlavně už zmíněné čištění míst, do nichž se aktivita smývá dešti a hromadí. Z toho hlediska je nutná kontrola zvláště čističek odpadní vody. Ve většině případů není aktivita odpadu z dekontaminovaných míst příliš vysoká, ovšem jejich objem je velký, takže se musí řešit problémy s jejich bezpečným uskladněním. Nakládání s ním a jeho uskladnění je třeba detailně vyřešit před tím, než se zahájí opravdu intenzivní dekontaminace zakázané zóny. Plány těchto prací vládní i místní úřady intenzivně projednávají. V Japonsku je nyní i komise dvanácti expertů Mezinárodní agentury pro atomovou energii. Ta ocenila dosavadní postup při sledování radiační situace, výskytu radioaktivních prvků v prostředí i potravinách a plány i postup v oblasti dekontaminace. Zvlášť kladně hodnotila šíři a detailnost poskytovaných informací.
Zmínění odborníci navštívili také oblasti, kde probíhají modelové příklady dekontaminace a sanace různých typů průmyslových objektů, městského osídlení či krajiny. Specifické problémy nastávají i tím, že se v některých případech jedná i o
oblasti, které byly přímo zasaženy cunami. Testovacími objekty jsou
například tepelná elektrárna Haramachi ve městě Minami-Soma, základní
škola Tominari či další veřejné budovy a jejich okolí. Na druhé straně se však také jedná o horské lesní terény nad Minami-Soma a farmy ve vesnici Iitate, již mnohokrát zmiňované v našem cyklu. Tam se hledají nejefektivnější postupy pro dekontaminaci rýžových polí a dalších zemědělských terénů. Zdá se, že se do značné míry potvrdily naděje vkládané třeba do pěstování slunečnic, které dokázaly snížit obsah radioaktivity v půdě o dvacet procent a někde až na polovinu. Získané zkušenosti se pak využívají při dekontaminaci v celé zasažené oblasti. Je možná zajímavé také zmínit, že zemětřesení a cunami nepřineslo jen problém s kontaminací radioaktivitou uniklou z jaderné elektrárny Fukušima I, ale z jiných zasažených průmyslových a zemědělských objektů unikla řada dalších látek, od kterých je třeba krajinu čistit. V nedávné době se například řešila zvýšená koncentrace dioxinů v řekách zasažených oblastí.
Zintenzivňuje se dozimetrická i preventivní zdravotní kontrola obyvatelstva ze zasažených oblastí. Kromě poskytování dozimetrů co nejširšímu okruhu lidí probíhá program kontroly štítné žlázy u dětí a mladistvých. Tyto prohlídky by měly u těchto lidí probíhat pravidelně nejdříve s dvouletou a následně pětiletou periodou. Týká se to zhruba 360 000 lidí, kteří jsou nyní mladší než osmnáct let. Kromě včasného odhalení případné rakoviny štítné žlázy, která by mohla být důsledkem radioaktivního jódu z Fukušimy I, mají tyto kontroly další pozitivní důsledek. Odhalí i nepravidelnosti ve funkci štítné žlázy, které s Fukušimou I nesouvisí a bez těchto kontrol by se na ně nepřišlo nebo by byly objeveny mnohem později. Už v prvních kontrolách se ukázalo několik takových případů, které ovšem vzhledem k délce inkubační doby jen těžko mohou souviset s radiací z elektrárny.
Zajímavým aspektem obavy prostých Japonců z radioaktivního zamoření z Fukušimy je, že si pořizují zařízení měřící radioaktivitu. Řadě skupin obyvatel se dozimetry poskytují i s pomocí místních i centrálních úřadů. Množství nezávislých měření v různých místech se tak rychle zvyšuje. Tak lze rychleji najít místa, kde se radioaktivita nahromadila a případně je dekontaminovat. Zároveň to přispívá k větší důvěře jednotlivých občanů, kteří mohou osobně dozimetrickou situaci ve svém okolí měřit, kontrolovat a rozhodovat se o případných opatřeních. Vede to i k takovým případům, z nichž jeden se stal v tokijské čtvrti Setagaya. Tam se našlo místo s velmi vysokou aktivitou. Ze začátku se předpokládalo, že jde o důsledek Fukušimy, ale po důkladné prohlídce se našly ampulky z radioaktivní látkou, pravděpodobně rádiem, které se využívá v lékařství.
Sledování radioaktivity v potravinách
Velice důležitým prvkem prevence před radiací je kontrola radioaktivity potravin. V předchozích článcích cyklu byla popsána kontrola mořských produktů a masa. Zatím se radioaktivita cesia 137 překračující zdravotní limity našla začátkem září v některých vzorcích čaje z nové sklizně v prefekturách Chiba a Saitarna. Nedávno se také našlo cesium v některých vzorcích hub pěstovaných na otevřených plochách. Jeho obsah sice nepřekračuje zdravotní limity, ale přesto se tyto zásilky vyloučily z potravinářské spotřeby.
V současné době se na trh dostává rýže z letošní sklizně. Na jedné straně je díky počasí během léta sklizeň velice dobrá co do množství i kvality. Na straně druhé ale panovala obava, zda nebude kontaminována radioaktivitou z Fukušimy I. Proto je rýže v zasažených oblastech kontrolována jak před sklizní tak po ní. Jednou z prvních, která se dostala do obchodů, byla rýže z prefektury Iwate začátkem října. Nyní se tam dostává i rýže z prefektury Fukušima, u které po pečlivé kontrole nebylo zaznamenáno překročení zdravotní limity. I když je kontrolována rýže, ze které se produkuje saké, je i tento populární japonský nápoj podrobován nové kontrole. V různých místech se také budují zařízení, kde si mohou občané přinést své potraviny k prověření.
Důležitou složkou řešení následků havárie je efektivní a rychlá výplata kompenzací postiženým obyvatelům, jež jim pomůže překonat období evakuace a vyřešit problémy při návratu. Většina kompenzací, která se vyplatila, je prozatímní záloha a postupně se stanovují standardy pro konečné sumy. Ty budou kromě reálných nákladů a ušlého zisku způsobených havárií obsahovat i kompenzaci psychické újmy.
Reaktory a jaderná energetika v Japonsku
Stále ubývá počet reaktorů, které jsou v činnosti. Postupně jsou odstavovány pro pravidelné prohlídky. V září byl například vypnut první reaktor jaderné elektrárny Ikata a v říjnu čtvrtý reaktor elektrárny Genkai. Povolení pro jejich opětné spuštění však místní úřady stále odkládají. Čeká se na dokončení stress testů, o které požádala vláda. Na těch už odborníci z jednotlivých elektráren intenzivně pracují. Je však otázkou, do jaké míry to místním úřadům bude stačit. Řada elektráren, například ta u města Shika, zároveň intenzivně pracuje na stavbě vyšších hrází proti cunami, které by vyloučily ohrožení i v případě extrémních přírodních katastrof. Přijímají se i další opatření pro zvýšení bezpečnosti.
Možná je zajímavé si připomenout, že i přes jadernou elektrárnu Fukušima II se přehnala cunami. Ta sice také zalila vodou turbínové haly a další zařízení, ale dieselové agregáty byly ušetřeny. Havarijní dochlazování tak sice fungovalo, ale byl poškozen systém, který přes výměník předává teplo mořské vodě. Zhruba den trvalo, než se jej podařilo zprovoznit. Během něj se zvyšovala teplota a tlak páry, takže se nějakou dobu uvažovalo o nutnosti odpustit páru z prvního reaktoru. Díky správné funkci havarijního dochlazování nebyla teplota aktivní zóny taková, že by došlo k poškození zirkoniového povlaku palivových článků a radioaktivita odpuštěné páry by byla velmi nízká. Nakonec však odpouštění páry nebylo nutné a reaktory se podařilo uvést do stavu studeného odstavení. Během půl roku od zemětřesení se podařilo areál i zasažené budovy zbavit trosek, vody a vyčistit. Zároveň se také provedla opatření, která by zvýšila ochranu proti stejně velké cunami. Situaci po cunami a nyní lze posoudit na jedné z řady dvojic fotografií, které společnost TEPCO uveřejnila.
Otevřenou zůstává otázka, zda bude možné spustit alespoň některé z reaktorů před z energetického hlediska náročnou zimní sezonou. Japonsko také zatím dočasně zmrazuje svůj program vývoje rychlých reaktorů, konkrétně experimentální práce v zařízení Monju. Souvisí to s nejistotou, která panuje kolem budoucnosti využívání jaderné energie v Japonsku a tedy i programu využívání rychlých reaktorů. Podle prohlášení ministerského předsedy Yoshihiko Nody se situace s rozestavěnými a plánovanými jadernými bloky bude posuzovat individuálně. Jaká bude v budoucnu politika Japonska v oblasti jaderné energetiky by mohla naznačit studie, kterou vypracovává Japonská atomová komise a zabývá se odhadem nákladů na jadernou energii se započtením důsledků havárie ve Fukušimě. V současnosti už totiž lze dělat první relativně seriozní odhady finančních nákladů na likvidaci havárie, dekontaminaci okolí a financování kompenzací škod pro postižené obyvatele. Některé podobné studie už dělala jiná japonská organizace zabývající se energetikou a dospěla k závěru, že i se započtením nákladů spojených s havárií ve Fukušimě je stále elektřina z jádra cenově srovnatelná i levnější než fosilní. Je třeba připomenout, že Japonsko všechna fosilní paliva dováží.
Závěr
Začátek postupného návratu evakuovaných lidí alespoň do některých oblastí zasažených havárii v jaderné elektrárně Fukušima I je jasnou známkou toho, že likvidace následků havárie postoupila do nové fáze. Snížení teploty u všech reaktorů pod hodnotu 100 °C a stabilní udržování tohoto stavu dává naději, že podmínky nutné pro povolení návratu obyvatel do zakázané zóny budou splněny i dříve než do konce roku, jak se zatím plánuje. Také při dekontaminaci a sanaci zasažených území se podařilo pokročit značně dopředu.
Můžeme tak doufat, že v případných dalších článcích série o Fukušimě I se dozvíme hlavně pozitivní zprávy. Na ně pochopitelně čekají hlavně obyvatelé postižených oblastí. Připomeňme, kde jsou předchozí články série, kde je vysvětlena řada pojmů a skutečností, které se zmiňují v tomto článku: zde, zde, zde, zde, zde, zde, zde, zde a zde.
O dopadu havárie ve Fukušimě I na budoucnost jaderné energetiky uveřejnil velmi zajímavou diskuzi internetový server Ekolist. A to z pozic jak spíše projaderných tak i výslovně protijaderných.