O.S.E.L. - Proč je pozemský život „levoruký“?
 Proč je pozemský život „levoruký“?
Experiment přinesl víc záhad než odpovědí.

Spustit animaci
Ribozom je ribonukleoprotein nacházející se ve vysokých počtech v cytoplazmě. Jejich úkolem je tvorba proteinů. Na obrázku je ribozomální podjednotka archebakterie. Kredit: David S. Goodsell, CC BY 4.0
Ribozom je ribonukleoprotein nacházející se ve vysokých počtech v cytoplazmě. Jejich úkolem je tvorba proteinů. Na obrázku je ribozomální podjednotka archebakterie. Kredit: David S. Goodsell, CC BY 4.0

Mohlo být jasno, ale není. Experiment měl rozlousknout záhadu „levorukosti“ bílkovin vytvářených pozemskými formami života. Přinesl však výsledky, jež naznačují, že prvním primitivním formám života bylo celkem jedno, jaké bílkoviny vytvářejí.

 

Irene A. Chen, vedoucí týmu na University of California. Kredit: UCLA
Irene A. Chen, vedoucí týmu na University of California. Kredit: UCLA

Pozemský život stojí a padá s bílkovinami. Slouží jako stavební prvky, plní roli katalyzátorů životních pochodů, přenášejí signály a obstarávají mnoho dalších „služeb“. Jsou tvořeny aminokyselinami, jejichž molekuly se vyskytují ve dvou zrcadlových provedeních, které se od sebe liší jako pravá a levá ruka.

 

Pozemský život staví bílkoviny v drtivé většině jen z „levorukých“, tedy levotočivých aminokyselin. Proč? To je záhada. Bílkoviny z pravotočivých aminokyselin by fungovaly stejně dobře, ale pozemský život je z nějakého důvodu „vynechal“ nebo je má dokonce „zakázané“. Vědci označují tuhle „jednostrannost“ pozemského života jako homochiralitu.

 

Tým vedený Irene Chenovou z University of California v Santa Barbara se pokusil přijít záhadě homochirality na kloub. Místo aby otázku „levorukosti“ vyjasnil, tak ji studií publikovanou ve vědeckém časopise Nature Communications ještě více zatemnil.

 

Schema jednoho z přírodních ribozymů. Katalyticky aktivní molekula RNA funguje jako enzym.  Objev těchto molekul rozdmýchal myšlenku RNA světa.  Modře: 5'-konec každého vlákna RNA. Červeně: 3'-konec. Jednotlivé nukleotidy jsou znázorněny jako tyčinky, fosfodiesterová kostra jako úzká trubice. Kredit: Wgscott. Wikipedia.
Schema jednoho z přírodních ribozymů. Katalyticky aktivní molekula RNA funguje jako enzym. Objev těchto molekul rozdmýchal myšlenku RNA světa. Modře: 5'-konec každého vlákna RNA. Červeně: 3'-konec. Jednotlivé nukleotidy jsou znázorněny jako tyčinky, fosfodiesterová kostra jako úzká trubice. Kredit: Wgscott. Wikipedia.

Současné formy pozemského života mají instrukce pro tvorbu bílkovin uloženou ve dvojité šroubovici kyseliny deoxyribonukleové - DNA. Ta se v buňkách přepisuje do formy jednoduché šroubovice kyseliny ribonukleové - RNA a ta pak slouží jako předloha pro syntézu bílkovin na buněčných organelách ribozomech. Pokud se zamyslíme nad počátky života, pak uvízneme v klasickém dilematu o slepici a vejci. Pro syntézu bílkovin je potřeba instrukce uložená v DNA. A pro syntézu DNA jsou potřeba bílkoviny - enzymy, které katalyzují její vznik ze základních stavebních kamenů. Jedno bez druhého nemůže být.

 

Východisko z této situace nabízí „RNA-svět“, kde se RNA ujímá dvojrole nosiče dědičné informace i katalyzátoru. Takovými „obojetnými“ molekulami RNA jsou tzv. ribozymy. Chenová a její spolupracovníci pojali podezření, že za „levorukostí“ bílkovin se skrývají zvláštnosti RNA, jež se prosadily v podmínkách RNA-světa. Rozhodli se tuhle teorii podepřít výsledky laboratorních experimentů.

 

Jason Dworkin, vedoucí astrobiologického výzkumu na Goddard Space  Flight Center NASA. Kredit: NASA.
Jason Dworkin, vedoucí astrobiologického výzkumu na Goddard Space Flight Center NASA. Kredit: NASA.

Ribozymům je to jedno

Výzkumníci simulovali v laboratoři podmínky, jaké mohly na Zemi vládnout v raném období RNA-světa. Inkubovali v roztoku ribozymy s molekulami, z nichž mohou vznikat aminokyseliny, a čekali, zda ribozymy začnou vytvářet přednostně levorukou aminokyselinu fenylalanin. Vyzkoušeli 15 různých kombinací a zjistili, že ribozymy mohou upřednostňovat jak levotočivé tak i pravotočivé aminokyseliny. To naznačuje, že RNA zpočátku neměla slabost pro chemickou preferenci jedné formy aminokyselin. Časné primitivní formy života zřejmě nepreferovaly levotočivé aminokyseliny tak, jak je tomu dneska.

 

Umělecké zpracování alternativní představy objevení se aminokyselin (stavebních kamenů peptidů) na Zemi.  Kredit: Mary Pat Hrybyk-Keith, NASA .
Umělecké zpracování alternativní představy objevení se aminokyselin (stavebních kamenů peptidů) na Zemi. Kredit: Mary Pat Hrybyk-Keith, NASA .

„V našem experimentu se ukázalo, že ribozymy mohou upřednostňovat aminokyseliny levotočivé nebo pravotočivé, což naznačuje, že RNA-svět obecně nemusel mít sklony k využívání formy aminokyselin, jaké nyní pozorujeme v biologických systémech," říká Irene Chenová. „Vypadá to, že homochiralita života nemusí být výsledkem chemického determinismu, ale mohla se objevit díky pozdějším evolučním tlakům.“

 

Co napoví vzorky z asteroidů nebo z Marsu

Z dob, kdy vznikal pozemský život, nemáme v horninách žádné doklady. Pokud existovaly, „vymazaly“ je pohyby zemské kůry. V té době bombardovaly naši planetu asteroidy, které mohly přinést některé ze stavebních kamenů života, jako jsou aminokyseliny. Proto vědci paralelně s chemickými experimenty sledují molekulární důkazy o původu života, jež pocházejí z meteoritů a asteroidů. To je doména člena výzkumného týmu Jasona Dworkina z Goddard Space Flight Center NASA v Greenbeltu, který se podílel na misi NASA OSIRIS-REx. Sonda při ní odebrala vzorky z asteroidu Bennu a loni je dopravila na Zemi k dalšímu studiu.

##seznam_reklama##

„Analyzujeme vzorky OSIRIS-REx na chiralitu jednotlivých aminokyselin a v budoucnu budeme testovat na důkazy života včetně ribozymů a proteinů také vzorky z Marsu," vysvětluje Dworkin. „Když porozumíme chemickým vlastnostem života, pomůže nám to při pátrání po životě ve sluneční soustavě.“

 

Pramen: Kenchel, J., Vázquez-Salazar, A., Wells, R., Brunton, K., Janzen, E., Schultz, K. M., ... & Chen, I. A. (2024). Prebiotic chiral transfer from self-aminoacylating ribozymes may favor either handedness. Nature Communications, 15(1), 7980.

 

Video: Pohled do laboratoře astrobiologie NASA


Autor: Jaroslav Petr
Datum:22.11.2024