O.S.E.L. - Jaderný spad z Hirošimy přispěl ke studiu vzniku Sluneční soustavy
 Jaderný spad z Hirošimy přispěl ke studiu vzniku Sluneční soustavy
Exploze o síle 15 kilotun v Hirošimě během pár prvních sekund vypařila a smíchala městský beton, kovy, sklo i půdu s pískem, vodou i vzduchem v okolí. Tak vzniklo hirošimské sklo. Shodou okolností je v řadě ohledů podobné prvním pevným látkám Sluneční soustavy, inkluzím CAI, které tehdy vznikly v akrečním disku kolem Slunce.

Prvních 5 sekund exploze v Hirošimě. Kredit: Asset et al. (2024), Earth and Planetary Science Letters.
Prvních 5 sekund exploze v Hirošimě. Kredit: Asset et al. (2024), Earth and Planetary Science Letters.

Když v Hirošimě 6. srpna 1945 explodoval Little Boy silou přibližně 15 kilotun TNT, šlo o teprve druhou jadernou explozi v historii. Při explozi a v následujících měsících zahynula asi třetina obyvatel města. Kromě hrůz a mnoha dalších důsledků pro japonskou společnost i celý svět představuje exploze v Hirošimě (a také následující v Nagasaki) velmi brutální experiment, který přinesl ojedinělá data, z nichž vědci těží dodnes.

 

Například výzkum v Hirošimském zálivu přinesl objev do té doby neznámého typu spadu, „hirošimského skla.“ Jde o materiál, který vznikl vypařením a kondenzací pozůstatků bomby, města i krajiny. Nathan Asset z francouzské Université Paris Cité a jeho kolegové se na hirošimské sklo podívali optikou planetárních věd. Provedli analýzy jeho chemického a izotopového složení, přičemž se zaměřili na proces vzniku tohoto materiálu při jaderné explozi.

 

Analýzy odhalily, že hirošimské sklo vzniklo rychlou kondenzací, v průběhu 1,7-5,5 sekund, uvnitř samotné exploze Little Boye. Teplota tam dosahovala v průměru asi 1000 až 3200 kelvinů, ale vyvíjela se v čase. Vtip je v tom, že tento proces z Hirošimy se podle všeho podobá tomu, jak vznikaly první pevné látky Sluneční soustavy, inkluze CAI (Calcium-aluminum-rich inclusion), bohaté na vápník a hliník, které známe z primitivních meteoritů. V jejich případě šlo o vypaření a kondenzaci mezihvězdného prachu a plynu.

 

Různé typy hirošimského skla. Kredit: Asset et al. (2024), Earth and Planetary Science Letters.
Různé typy hirošimského skla. Kredit: Asset et al. (2024), Earth and Planetary Science Letters.

 

Badatelé prostudovali 94 vzorků hirošimského skla a rozdělili je do 4 skupin: melilitické (málo oxidu křemíku, hodně oxidu vápníku a oxidu hořčíku), anortozické (hodně oxidu hliníku, železo), sodnovápenaté (hodně oxidu křemíku a oxidu sodíku) a křemenné (hodně oxidu křemíku).

 

Asset a spol. také rekonstruovali průběh událostí v prvních sekundách po explozi. Little Boy explodoval ve výšce 580 metrů nad městem v ohnivé kouli o poloměru 260 metrů. Nejprve dosáhl teploty 10 milionů kelvinů a tlaku 1 milionu atmosfér.

 

Logo. Kredit: Université Paris Cité.
Logo. Kredit: Université Paris Cité.

Vzápětí narazila do země žhavá vlna o teplotě 6 287 °C. Během 0,35 sekundy po explozi se tlak vrátil na běžnou úroveň. Do 10 sekund po explozi klesla teplota na 1 500 až 2 000 kelvinů a tím skončilo vypařování většiny hmoty.

 

V prvních sekundách po explozi se v dané oblasti vypařil materiál města, tedy beton, kovy, sklo a půda, a smísil se společně s pískem, vodou řeky Ota a atmosférou. Z toho poté vznikly různé typy hirošimského skla.

##seznam_reklama##

 

Pozoruhodné je, že izotopové složení křemíku a kyslíku hirošimského skla odpovídá složení zmíněných inkluzí CAI z úsvitu Sluneční soustavy. Přitom se některé parametry prostředí u těchto procesů podstatně lišily. Teplota byla o něco vyšší v Hirošimě než v akrečním disku Sluneční soustavy (3 500 vs 2 000 kelvinů) a tlak byl v Hirošimě dokonce mnohonásobně vyšší (1 atmosféra vs 1 tisícina až 1 miliontina atmosféry) Lišil se i čas. V Hirošimě bylo hotovo za pár minut, v akrečním disku to zřejmě zabralo mnoho let. Přesto mohou hirošimská skla prozradit řadu zajímavých poznatků, které se týkají vzniku materiálu v rané Sluneční soustavě.

 

Video: File film of the atom bomb being dropped on Hiroshima by United States planes in 1945

 

Literatura

Phys.org 22. 2. 2024.

Earth and Planetary Science Letters 626: 118473.

 



Autor: Stanislav Mihulka
Datum:29.02.2024