Pozoruhodný výsledek získala skupina českých vědců z Matematického ústavu Akademie věd ČR a Matematicko-fyzikální fakulty Univerzity Karlovy ve složení Vojtěch Pravda, Alena Pravdová (oba MÚ AV ČR), Jiří Podolský a Robert Švarc (oba MFF UK). Jako první na světě získali přesná sféricky symetrická vakuová řešení pro jeden typ kvadratických teorií gravitace. Sféricky symetrická vakuová řešení odpovídají v obecných teoriích gravitace černým děrám nebo obecněji i nahým singularitám, které vznikají po gravitačním zhroucení příliš hmotných objektů, pokud teorie takové zhroucení připouští (připouští je, pokud od určitého kritického stavu rostou gravitační síly rychleji než odpudivý tlak hmoty).
Kvadratické teorie gravitace představují jednu z mnoha kategorií teorií jdoucích za rámec Einsteinovy obecné teorie relativity (OTR). Některá z těchto rozšíření či alternativ k OTR se studují už od dob vzniku Einsteinovy teorie, některé z nich navrhl a studoval i sám Albert Einstein. Důvodů pro jejich studium je celkem dost (samozřejmě kromě toho, že existuje alternativní teorie popisující daný okruh jevů, což je sám o sobě legitimní důvod). Alternativy k Einsteinově teorii se studovaly např. kvůli tomu, že se hledaly teorie sjednocující gravitaci s elektromagnetismem či obecněji i s dalšími silami, nebo kvůli tomu, že se hledala teorie mající některé specifické vlastnosti odlišné od OTR (např. by v ní existoval tzv. tenzor energie-hybnosti gravitačního pole, který v OTR chybí). Dalším z významných důvodů bylo, že se hledala teorie, která umožní vytvořit kvantovou verzi a tím i teorii kvantové gravitace (zatímco v OTR při použití dnes známých postupů vzniká nekonečně mnoho typů nekonečných veličin, a to znemožňuje získat jakékoliv predikce). Ještě jiným důvodem bylo hledání teorie, která by vysvětlovala efekty, které přičítáme temné hmotě, nebo temné energii, optimálně pak obojímu (opět, samotná OTR je vysvětlit neumí, právě proto pro jejich vysvětlení musíme přidávat ty „temné ingredience“). Také byly hledány teorie, které odstraní počáteční singularitu velkého třesku nebo které přirozeně vysvětlí inflační fázi rozpínání vesmíru (inflační fáze se opět musí ke stávajícím kosmologickým teoriím uměle „dolepit“ pomocí ad hoc hypotézy).
Důvodů, které motivují hledání alternativ k Einsteinově teorii gravitace je tedy více. Je nutné říct, že ačkoliv byly nalezeny teorie, které na rozdíl od OTR vyhovují některým ze zmíněných požadavků, dodnes nebyla nalezena teorie, která vyhovuje všem z nich (snad až na strunové teorie, které pro změnu přináší své vlastní netriviální problémy). Konkrétně pak kvadratické teorie gravitace jsou význačné tím, že v principu umožňují vytvoření tzv. renormalizovatelné gravitační teorie, tj. teorie, která obsahuje maximálně konečný počet typů nekonečných veličin v kvantové verzi (tento konečný počet typů nekonečen vznikajících během kvantování je možné eliminovat v procesu tzv. renormalizace, který zhruba řečeno vede k tomu, že se obětuje konečný počet veličin, které pak teorie na základě svých parametrů neumí předpovědět a které se musí prostě změřit – je tedy jasné, že jakmile by takto obětovaných hodnot bylo nekonečně hodně, tak by se taková teorie stala do značné míry bezcennou). Aniž bychom zabíhali do detailů renormalizovatelných teorií, zmiňme aspoň, že stávající tzv. Standardní částicový model sice nekonečna také obsahuje, ale jenom konečně mnoho typů, a proto jde o renormalizovatelnou teorii (mimochodem velice úspěšnou).
U každé teorie gravitace hraje velice důležitou roli to, nakolik umí reprodukovat úspěšně ověřené předpovědi svých předchůdců. Tak např. obecnou teorii relativity by nikdo nemohl brát vážně, pokud by sice měření přesně potvrzovala ohyb světla v gravitačním poli, stáčení perihelií planet, dilataci prostoru a času, gravitační posuv a další typicky obecně-relativistické jevy, ale přitom by totálně vybouchla v Keplerovské nebeské mechanice. Reprodukce úspěšných předpovědí Newtonovy teorie gravitace bylo vlastně takovým nulovým testem OTR, a teprve když tímto sítem prošla, tak teprve potom mělo smysl zajímat se o odlišnosti předpovídané pro jevy buďto zatím nepozorované (např. pro ohyb světla, gravitační posuv či časové a prostorové dilatační jevy), nebo pro jevy předchozí teorií neuspokojivě vysvětlené (stáčení perihelia). Úplně stejný princip je vyžadován i pro jakoukoliv novou teorii – nejprve ukaž, jak umíš popsat to, co úspěšně popsala tvá předchůdkyně, a teprve potom má smysl se zabývat tím, co údajně umíš nad její rámec.
Dnešní nové teorie gravitace jsou většinou konstruovány tak, že nemají velký problém s reprodukováním Keplerových zákonů. Výrazně horší je to už s např. předpovědí velikostí slapových sil, kde i jinak slibné teorie umí nečekaně selhat. Jedním z důležitých prubířských kamenů je bezesporu to, jaký tvar sféricky symetrických řešení gravitačního pole teorie předpovídá. Sféricky symetrické pole je obecně generováno sféricky symetrickým rozložením hmoty, zajímáme se tedy typicky o to, jaké gravitační pole generuje např. hvězda či ještě kompaktnější objekt. Pokud se zajímáme o průběh gravitace uvnitř toho tělesa, pak bychom hledali nevakuové řešení, protože ale nemáme jak měřit průběh gravitačního pole uvnitř hvězd, zajímáme se o vnější gravitační pole, tedy hledáme průběh gravitačního pole ve vakuu, tedy nad povrchem zdroje tohoto pole.
Průběh vnějšího gravitačního u hvězd ale moc velkou zkouškou není, protože prakticky každá gravitační teorie umí bez problémů zreprodukovat Newtonův gravitační zákon pro slabá gravitační pole (adjektivum slabá je zde samozřejmě relativní pojem). Mnohem zajímavější je případ extrémně silných gravitačních polí, jaká existují pouze v blízkostech neutronových hvězd nebo v blízkostech horizontů černých děr. Takováto pole umí moderní astrofyzika „testovat“ prostřednictvím typických jevů, které v těchto silných polích vznikají – kromě už zmíněného stáčení perihelia je to např. rozpad orbity, kdy dochází ke spirálovitému přibližování obíhajících se těles (tento jev lze optimálně pozorovat u obíhajících se pulzarů, např. u dnes již učebnicového Hulse-Taylorova binárního pulzaru). Lze také pozorovat trajektorie hvězd obíhajících kolem či padajících do gigantické černé díry v centru naší Galaxie.
Pro obecnou teorii relativity je velmi dobře známo sféricky symetrické vakuové řešení Einsteinových gravitačních rovnic, kterým je tzv. Schwarzschildovo metrika. Právě díky tomuto řešení byly poprvé předpovězeny v té době ještě nepředpokládané vlastnosti, jako je existence horizontu událostí (vzdálenosti od centra zkolabovaného objektu, z pod nějž už principiálně není návratu) či nekonečné zpomalování času nad horizontem. Takovéto objekty opatřené horizontem událostí byly později nazvány černými děrami a intenzivně studovány, aby pak mohly být doporučeny např. jako akceptovatelné vysvětlení pro do té doby záhadné kvazary – objekty velice malých rozměrů vzhledem ke gigantickému elektromagnetickému záření, jehož jsou zdroji. V relativně nedávné době byly nakonec černé díry, konkrétně jejich srážka, navrženy i jako pravděpodobné vysvětlení pro zdroj prvních pozorovaných gravitačních vln, např. hned pro první detekovanou událost GW150914.
Zatímco pro OTR je přesné sféricky symetrické řešení známo již dlouho (Karl Schwarzschild ho publikoval už v lednu 1916), tak mnohé alternativy Einsteinovy teorie si dodnes musí vystačit pouze s numerickými výpočty – tzn. že místo přesného řešení zapsaného typicky ve tvaru nějakých funkčních závislostí, ze kterého lze odvozovat obecné vlastnosti týkající se např. pohybu jiných těles v takovém poli, je nutné zadat nějaké konkrétní parametry, pro ty provést numerický výpočet, potom parametry pozměnit, provést výpočet pro pozměněné parametry, pak parametry opět pozměnit, atd. atd.. Tento proces je nejen náročný na výpočetní výkon použitých počítačů, ale také v sobě mj. skrývá nebezpečí kumulovaných chyb a v důsledku pak třeba i úplně zcestného výsledku. Tou nejhlavnější nevýhodou ale je to, že numericky získaná řešení jde velice špatně zevšeobecňovat a extrapolovat pro jiné hodnoty parametrů, než pro které byly získány. Mnohé výsledky samozřejmě nelze získat jinak, než numericky, protože přesných řešení je ve fyzice relativně málo, nicméně tam, kde přesné řešení vyjádřené ideálně v analytickém tvaru existuje, znamená to obrovskou výhodu pro budoucí zkoumání vlastností a důsledků takového řešení.
Z toho důvodu je velice významným výsledkem, že se zmíněné čtveřici českých výzkumníků podařil právě tento husarský kousek – získat přesné řešení pro sféricky symetrické vakuové gravitační pole pro jednu z kvadratických teorií gravitace. Na rozdíl od OTR, která obsahuje dva parametry (gravitační konstantu a kosmologickou konstantu) obsahuje zkoumaná teorie parametry čtyři (kromě dvou zmíněných konstant ještě další dvě, přičemž vhodnou volbou těchto konstant lze jako speciální případ dostat i OTR). V případě, že nejde o speciální případ, kdy se kvadratická teorie redukuje na OTR, tak tato teorie obsahuje i tzv. Bachův tenzor, který modifikuje gravitační pole černých děr a také určuje specifické chování těles obíhajících v takovém poli – v principu by tedy někdy v budoucnu mohlo být např. na základě pohybu hvězd v blízkosti gigantické černé díry v centru Mléčné dráhy rozhodnuto, která teorie platí.
Čeští vědci tedy našli přesný výsledek pro zobecnění Schwarzschildova řešení na širší teorii, která OTR obsahuje jako svůj speciální případ. Tento jejich výsledek může v budoucnu umožnit zjistit, jestli platí Einsteinova teorie, nebo obecnější kvadratická teorie (nebo event. ani ta ne). Pokud by se ukázalo, že platí širší teorie (která se přitom neredukuje na OTR), mohlo by to navíc znamenat i výrazný pokrok v hledání kvantové teorie gravitace.
Pro zájemce, zde je k nalezení tisková zpráva Akademie věd: https://www.avcr.cz/cs/pro-media/ a zde volně přístupný článek českých výzkumníků: https://utf.mff.cuni.cz/~podolsky/2018/PRL2018.pdf
Napsáno pro osel.cz.