Kolem roku 1600 prováděl Galileo Galilei jednoduché, ale významem na svou dobu převratné experimenty s různými tělesy volně padajícími z výšky. Dospěl k závěru, který se i dnes mnohým zdá být v rozporu se „zdravým rozumem“ - v gravitačním poli Země na všechna tělesa, bez ohledu na složení a hmotnost, působí stejné gravitační zrychlení (slabý princip ekvivalence). Isaac Newton provedl experimenty s kyvadly se zátěžemi z různých materiálů a univerzálnost této fyzikální zákonitosti prověřil s přesnosti 1:1000. V současnosti 300kilogramový minisatelit MICROSCOPE (Micro-Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) v podmínkách volného pádu na oběžné dráze v gravitačním poli Země zvýšil hodnotu přesnosti o dalších 11 řádů.
Že princip ekvivalence platí pro běžnou hmotu, je tedy nad Slunce jasnější. Ale co hmota temná, které je v kosmickém měřítku asi čtyři krát více než té známé? S tajemstvím „temnohmotní“ podstaty souvisí i důležitá otázka: je gravitační interakce mezi známou a neznámou formou hmoty jediná síla působící na velké vzdálenosti? Řečeno z jiného, relativistického pohledu - záleží pouze na tom, jak jedna i druhá matérie zakřivuje časoprostor? Není toto vzájemné působení přece jen ovlivněno nějakou doposud neznámou „pátou sílou“? Ještě jinak – platí i pro temnou hmotu princip ekvivalence, působí v určitém místě na různě hmotná tělesa odlišného složení stejným gravitačním zrychlením?
Tuto otázku si položili astrofyzikové Ústavu Maxe Plancka pro radioastronomii v německém Bonnu. Za možného zprostředkovatele odpovědi si zvolili binární pulsar, gravitačně vázanou soustavu dvou těles. Jedním z nich je rychle rotující malá, ale extrémně hustá neutronová hvězda - pozůstatek po obří masivní hvězdě, jež explodovala jako supernova. Druhým pak je třeba bílý trpaslík, což je závěrečná fáze vývoje hvězd menší a střední velikosti s původní hmotností do osminásobku Slunce, jakých je v Galaxii většina. Vědci navrhli průzkumný projekt zaměřený na co nepřesnější měření vlivu temné hmoty na obě, složením i fyzikálními vlastnostmi tak rozdílná tělesa binárního systému. Bude jejich interakce s temnou hmotou stejná, nebo existuje doposud nepozorovaný rozdíl, který by bylo možné odhalit na malých změnách oběžné dráhy? I kdyby plánovaná pozorování pomocí nejvýkonnějších radioteleskopů nevedla k převratnému výsledku, alespoň zmenší prostor pro hledání možných vlastností tajemné složky vesmíru. A přispěje k poznatkům o centrální oblasti Mléčné dráhy obklopené halem temné hmoty, v níž vědci budou pátrat po vhodných binárních pulzarech.
Mezi takové kandidáty patří i 3 750 světelných let vzdálený binární pulzar PSR J1713+0747. Jde o neutronovou hvězdu s hmotností přibližně 1,3 násobku hmotnosti Slunce a s velice stabilní rotační periodou pouhých 4,6 milisekundy. Za sekundu se tedy otočí 217 krát. Máme to štěstí, že magnetická osa, která je od té rotační odkloněna, v určitém okamžiku při každé otočce proběhne oblastí Země. Díky tomu radioastronomové mají možnost pozorovat ten bláznivě rychlý majákový efekt – podél této magnetické osy vyzařující intenzivní paprsky. Pulsar má svého průvodce, asi 4 krát méně hmotného bílého trpaslíka. Obě tělesa jednou za 68 dní oběhnou kolem společného těžište soustavy po téměř kruhové dráze, jejíž velká poloos měří kolem 60 miliónů km (přibližně 40 % vzdálenosti Země - Slunce). Nám laikům se to možná zdá být překvapivě málo u tak extrémních těles. Opak je však pravdou. Milisekundové binární pulsary jsou obvykle se svým souputníkem v užším spojení a obíhají se v mnohem kratší vzdálenosti za mnohem kratší dobu. A právě velká oběžná dráha pulzaru J1713+0747 je pro pátrání vlivu temné hmoty velmi vhodná. Větší vzdálenost mezi oběma přestárlými hvězdami znamená i menší vzájemné gravitační působení, a tedy i větší citlivost soustavy na případné vnější gravitační poruchy ovlivňující oběžnou dráhu. Protože pohyb po ní je vlastně volným pádem, projekt je tak vesmírným testováním platnosti principu ekvivalence mezi temnou a běžnou hmotou.
I když je pulzar „prťavý“, několik kilometrový, hmotnost krychlového centimetru jeho gravitačně degenerované hmoty by na Zemi vážil řádově stovky milionů tun. Tak hustý objekt má i obrovské povrchové gravitační pole - přibližně dvě stě miliardkrát krát větší než má naše planeta. Když i díky tomu na něj bude temná hmota působit jinak než na bílého trpaslíka, například větším gravitačním zrychlením, časem se to projeví na deformaci oběžné dráhy binárního systému. A právě taková změna je důležitá. Jenže jak přesně ji lze na vzdálenost tisíců světelných let vůbec změřit? V případě pulzarů s velmi stabilní rotací, jakým je i J1713+0747, lze radiový signál měřit s přesností do sto miliardtin sekundy (100 ns), což umožňuje určit parametry oběžné dráhy s přesností do 30 metrů! Přestože výsledky dosavadního, přes dvacet let trvajícího pozorování binárních pulzarů nenaznačují, že by k změnám oběžných drah docházelo, vědci budou po nich pátrat dál na místech, kde je vyšší koncentrace temné hmoty. A podrobněji, s nejvyšší přesností. Když se navíc dobuduje plánovaný velkoplošný radioteleskop Square Kilometre Array v Australii a Jižní Africe, budou mít k dispozici zařízení s 50 krát vyšší citlivostí než mají stávající největší radioteleskopy.
Podrobný popis plánovaného experimentu zveřejnil časopis Physical Review Letters (15. 6. 2018), jeho preprint je dostupný ZDE.
Video: Binární pulsar PSR J0348+0432. V tomto případě se neutronová hvězda a bílý trpaslík obíhají s periodou 2,5 hodiny v těsnější blízkosti než v článku zmiňovaný binární systém PSR J1713+0747. Ztráta energie systému se projevuje v plynulé změně běžné dráhy, což je nepřímý důkaz emise gravitačních vln. Kredit: ESO.
Zdroj: A New Experiment to Understand Dark Matter
99,97% koncentrát temné hmoty se jmenuje Segue 1
Autor: Dagmar Gregorová (09.08.2011)
Mohla by mít temná hmota elektrický náboj?
Autor: Stanislav Mihulka (01.06.2018)
Pokud je temná hmota společenská, tak ve vesmíru může běžet temná fúze
Autor: Stanislav Mihulka (11.06.2018)
Diskuze: