Proč ještě nevyrábíme elektřinu termonukleární syntézou, čili ve fúzních reaktorech? Důvodů je samozřejmě spousta, závažné jsou přitom hlavně ty ekonomické. Stručně a jasně, fúzní elektrárny se prozatím nevyplatí. Jejich koncepty jsou tak drahé, že za stávajících okolností nemají vůbec žádnou šanci porazit staré dobré technologie s fosilními palivy. Vývojářům Washingtonské univerzity to přišlo natolik tristní, že se na tom rozhodli zapracovat.
Thomas Jarboe a jeho kolegové postupně vytvořili koncept fúzního reaktoru, který by při velikosti dnešních velkých elektráren prý mohl ekonomikou provozu konkurovat moderním uhelným elektrárnám se srovnatelným výkonem. Tým vývojářů publikoval design fúzního reaktoru a analýzu nákladů na jeho stavbu a provoz minulé jaro a příští týden by o něm měl referovat na 25. Konferenci o fúzní energii (FEC 2024) Mezinárodní agentury pro atomovou energii (IAEA), která se odehraje 13. až 18. října v ruském Sankt-Petěrburgu. Podle Jarboeho má jejich koncept v tuto chvíli největší potenciál vyrábět fúzní elektřinu ekonomicky smysluplně.
Projekt fúzního reaktoru, kterému jeho autoři přezdívají dynomak, vznikl před dvěma lety v rámci výuky. Časem se ukázal jako životaschopný a Jarboe se ho rozhodl dál rozvíjet a vylepšovat. Design dynomaku vychází z existujících technologií a zahrnuje magnetické pole v uzavřeném prostoru, které udrží žhavou plazmu tak dlouho na jednom místě, že se v ní může rozběhnout jaderná fúze. Fúzní reaktor dynomak je do značné míry technologicky soběstačný a dovede si sám ohřívat plazmu na teplotu nezbytnou k udržení prostředí vhodného pro jadernou fúzi. Teplo z dynomaku vytváří páru, která roztáčí turbínu a tím vyrábí elektřinu, podobně jako v klasických elektrárnách.
Magnetické pole pro fúzní reaktor lze vytvořit několika různými způsoby. Dynomak z Washingtonské univerzity využívá technologii sféromaku (spheromak), která spočívá v generování magnetických polí vnitřními proudy přímo v plazmě. Fyzika sféromaků je vlastně docela podobná slavným astrofyzikálním jevům, které známe z našeho Slunce anebo i z hloubi vesmíru – jako jsou koronální smyčky nebo relativistické výtrysky hmoty z aktivních galaktických jader. V důsledku toho mají sféromaky včetně dynomaku nižší nároky na množství konstrukčního materiálu a mohou mít menší rozměry než jiné fúzní reaktory.
Pro srovnání, mediálně slavný tokamak ITER, čili Mezinárodní termonukleární experimentální reaktor, který od roku 2007 náročně budují ve francouzském městě Cadarache, je šíleně drahý a taky hodně veliký. Dynomak by stál desetinu ceny tokamaku ITER a přitom by vyprodukoval pětinásobek jeho produkce energie. Ani dynomak ovšem nebude k dispozici hned. Jarboe a spol. prozatím úspěšně otestovali schopnost prototypu dynomaku v měřítku 1 ku 10 udržet plazmu a s Centrem pro komercionalizaci Washingtonské univerzity pracují na jeho patentování. Případná dynomaková elektrárna je ale podle všeho ještě dlouhé roky daleko.
Video: Spheromak. Kredit: jquad1.
Video: ITER- in five minutes. Kredit: ITERorganization.
Literatura
Washington University News 8. 10. 2014, Wikipedia (Fusion power, Spheromak).
Jaderná fúze: nový harmonogram dokončení reaktoru ITER
Autor: Slavomír Entler (08.07.2024)
Rekordní výsledky ve výzkumu jaderné fúze
Autor: Slavomír Entler (25.04.2024)
Jihokorejský tokamak KSTAR udržel 100 milionů °C plazma 48 sekund
Autor: Stanislav Mihulka (04.04.2024)
Fúzní reaktory si vyrobí palivové pelety vlastními lasery
Autor: Stanislav Mihulka (15.07.2023)
Reálný význam současného průlomu v termojaderné fúzi na zařízení NIF
Autor: Vladimír Wagner (17.12.2022)
Diskuze: