Nehostinné kosmické prostředí
Konstrukce kosmických lodí je ve vesmíru vystavována mnoha nepříznivým vlivům. Velkým problémem jsou změny teplot. Jednou je loď na oběžné dráze zahřívána slunečním svitem a dosáhne stovek °C, podruhé je ve stínu a její teplota klesne hluboko pod bod mrazu. K tomu se přidají ještě mikrometeority – prachové částečky narážející do konstrukce rychlostí několika kilometrů za sekundu, které způsobí vznik malých trhlin na povrchu. Zvláště u družic obíhajících Zemi je tato kombinace velmi nebezpečná.
Loď je cyklicky namáhána tepelnou roztažností a trhliny od mikrometeoritů mohou způsobit rychlou zkázu. Jedná se o podobný jev, jaký byl příčinou mnoha, zprvu nevysvětlitelných nehod prvního civilního proudového letounu De Havilland Comet. Tam byla kabina cyklicky namáhána změnami relativního tlaku v kabině na zemi a v letové hladině. Drobná trhlina vzniklá ve výrobě způsobila po přibližně tisíci letech nečekané a nekontrolovatelné (trhlina se šíří rychlostí zvuku) roztržení trupu letadla. Tehdy muselo dojít ke třem nevysvětlitelným haváriím, než se problému začalo pořádně věnovat. Nyní už konstruktéři vědí, kde mohou čekat problémy, a tak požadují materiály, které by jim předcházely.
Krvácející materiál
Materiáloví inženýři se nechali inspirovat přírodou. Když se poraníte, začne vám téct krev a rána se postupně zacelí. Výzkumníci tedy vytvořili materiál skládající se z mnoha trubiček (dutých vláken) o průměru 30 µm naplněných lepidlem. Aby se lepidlo při poškození snadno uvolnilo, musí být vlákna křehká a lepidlo dostatečně tekuté. Výzkumníci tedy zvolili určitou formu sklelných vláken naplněných dvousložkovým lepidlem. Zvolit vhodné lepidlo a vhodně umístit tvrdidlo v matrici z polymeru byl jistě jeden z klíčových problémů výzkumu. V běžných podmínkách lepidla reagují se vzduchem respektive kyslíkem nebo vzdušnou vlhkostí, a tak se vytvrzují. Ve vesmíru však vzduch ani vlhkost nejsou. Proto je nutné umístit pryskyřici i tvrdidlo tak šikovně, že se při poškození smísí, vyplní trhlinu a ztvrdnou dostatečně rychle namísto toho, aby se jednotlivě vypařily do vakua.
Vědcům se to podařilo tak, že dutinu vlákna vyplnili pryskyřicí a do polymerové matrice vlákna obklopující přimíchali mikrokapsle tvrdidla. Při poškození se rozlomí jak matrice s mikroklapslemi, tak vlákno s pryskyřicí, která vyteče a reakcí s tvrdidlem z rozlomených kapslí se vytvrdí. Mechanické vlastnosti tohoto kompozitu (vlákna + matrice) jsou velmi dobré. Měřená pevnost v ohybu se pohybuje okolo 550 MPa a po vytvrzení je dokonce ještě o něco vyšší. Samozřejmě se vytvrzením o něco zvýší křehkost. Bohužel vědci neuvádí, v jaké formě se použití materiálu plánuje, zda jím bude kosmická loď z vnějšku obalena nebo bude vnitřní součástí nějakého vícevrstvého kompozitu.
Trvanlivější a bezpečnější kosmické lodě
Kosmické lodě, které se budou umět samy opravovat, umožní déle trvající a tím pádem levnější mise. Delší životnost satelitů na oběžné dráze sníží jejich ceny, a tak budou levnější satelitní hovory nebo datové a televizní přenosy. Každopádně bude nový materiál, pokud se osvědčí, přínosem i pro pilotované kosmické lety. Vyšší bezpečnost, lehčí a levnější konstrukce otevře cestu ke vzdálenějším cílům ve sluneční soustavě.
Další informace
Spacecraft, heal thyself (20. 1. 2006) – Kosmická loď, která se opraví sama – tisková zpráva
Enabling Self Healing Capabilities (PDF 3,3 MB 174 str.) – Studie na téma samoopravitelných materiálů
Článek Kosmická loď se opraví úplně sama vyšel původně na webu Techblog.
Diskuze: