Fyzici změřili „velikost“ neutrina: Je větší než běžné atomové jádro  
Neutrina jsou přízraky, které se řítí vesmírem, aniž by se příliš zajímaly o to, s čím se na své dráze setkají. Mezinárodní tým fyziků provedl experiment, v němž odhadl velikost elektronového neutrina. Vzhledem k tomu, že neutrina mají téměř nulovou hmotnost, je určená velikost docela slušná.
První detekce neutrina dne 13. listopadu 1970 v Argonne National Laboratory . Neutrino naráží na proton v atomu vodíku; ke srážce dojde v místě, kde na pravé straně fotografie vycházejí tři stopy.
První detekce neutrina dne 13. listopadu 1970 v Argonne National Laboratory . Neutrino naráží na proton v atomu vodíku; ke srážce dojde v místě, kde na pravé straně fotografie vycházejí tři stopy. (Kredit: volné dílo)

Neutrina jsou subatomární elementární částice ze skupiny leptonů, jejichž hmotnost, pokud víme, je velice blízká nule, leč nenulová. Jsou to extrémní stvoření, která se zběsile řítí vesmírem a jen vzácně interagují s normální hmotou. Do dneška jsme objevili tři neutrina a jejich protějšky, antineutrina.

 

Měření velikosti neutrina. Kredit: Smolsky et a. (2025), Nature. (2025). DOI: 10.1038/s41586-024-08479-6
Měření velikosti neutrina. Kredit: Smolsky et a. (2025), Nature. (2025). DOI: 10.1038/s41586-024-08479-6

Fyzici se o ně velmi zajímají, protože by mohla přinést odpovědi na některé palčivé otázky dnešní fyziky. Původ temné hmoty to nejspíš nebude, stále je ve hře vysvětlení převahy hmoty nad antihmotou.

 

Vzhledem k jejich povaze se ale kolem neutrin stále vyskytují otazníky. Jednou ze zásadních otázek je velikost neutrin, která stále zůstávala nejasná. Velikost má nejen teoretický ale i ryze praktický význam pro navrhování vhodných tvarů detektorů neutrin. V současnosti jsou detektory neutrin velmi velké, aby měly slušnou pravděpodobnost detekce neutrin.

 

Joseph Smolsky. Kredit: Colorado School of Mines, Physics.
Joseph Smolsky. Kredit: Colorado School of Mines, Physics.

Mezinárodní tým, který vedl Joseph Smolsky z americké Colorado School of Mines v Goldenu, dokázal odhadnout velikost neutrin při analýze radioaktivního rozpadu beryllia. Změřili velikost vlnového balíku (wave packet) elektronového neutrina, které vzniklo při tomto rozkladu.

 

V experimentu šlo o rozpad beryllia na lithium. Při tomto procesu se v atomu beryllia elektron spojí s protonem a vznikne neutron, čímž se beryllium přemění na lithium. Zároveň se uvolní energie, která tlačí atom jedním směrem a vytvořené elektronové neutrino druhým.

Logo. Kredit: Colorado School of Mines, Physics.
Logo. Kredit: Colorado School of Mines, Physics.

 

Smolsky a spol. tento proces rozběhli v urychlovači částic, kolem něhož umístili extrémně citlivé detektory neutrin. Změřili hybnost vytvořených atomů lithia a použili ji k odhadu velikosti elektronových neutrin.

 

Z experimentu vyplynulo, že spodní limit velikosti vlnového balíku elektronového neutrina je 6,2 pikometrů. Měření přitom odráží kvantově mechanickou povahu neutrin, takže se „velikost“ týká spíše kvantové nejistoty velikosti vlnového balíku než konkrétní fyzikální dimenze. Výsledky experimentů ukazují, že vlnový balík elektronového neutrina je podstatně větší než typické atomové jádro. Jde o zajímavý objev, na který určitě naváže další výzkum.

 

Video: How To Detect a Neutrino

 

Literatura

Phys.org 13. 2. 2025.

Nature online 12. 2. 2025.

Datum: 18.02.2025
Tisk článku

Související články:

Spektrometr KATRIN provedl první „vážení“ nejlehčí známé částice - neutrina     Autor: Vladimír Wagner (16.09.2019)
Finální výsledky experimentu STEREO pohřbily sterilní neutrino     Autor: Stanislav Mihulka (12.01.2023)
První přímé pozorování neutrina na urychlovači LHC     Autor: Vladimír Wagner (24.04.2023)



Diskuze:

Žádný příspěvek nebyl zadán



Pro přispívání do diskuze musíte být přihlášeni



Zásady ochrany osobních údajů webu osel.cz