Historie vypalovaných cihel sahá až do neolitické Číny. Teď to vypadá, že po tisíci letech, a znovu zásluhou Číňanů, dostanou cihly novou šanci. Dovybavené povlakem z vodivého polymeru, mohou sloužit jako stacionární superkondenzátory.
Hongmin Wang se svými kolegy údajně vyvinuli levný způsob, jak pomocí par kyseliny na cihlu nanášet při teplotě 160 stupňů Celsia povlak vodivého polymeru. Protože je cihla porézní materiál, napařovaný polymer se vsákává a jeho vodivá nanovlákna pronikají hluboko pod povrch. Výsledkem je jakási iontová houba schopná uchovat elektrický náboj, a tím i elektrickou energii.
Jako vodivý polymer zvolili vědci již delší dobu známý PEDOT (poly (3,4-ethylendioxythiofen). Genialita jejich nápadu ale spočívá v jednoduchosti řešení – využití cihel. Kromě oxidů křemičitého a hlinitého, je v nich také dostatek oxidu železa (v jiných případech mu říkáme hematit, nebo rez). Kromě toho, že dává cihle onu typickou červenou barvu, je to on, který spouští po vsáknutí nástřiku proces polymerizace. Je to právě porézní mikrostruktura pálených cihel, která spolu s přítomným hematitem tvoří ideální substrát, jak pro tvorbu robustních elektrod, tak i pro nanášení nanofibrilárního vodivého polymerního ethylendioxythiofenu propůjčujícího povlaku vysokou elektronickou vodivost.
O případném prosazení nápadu do praxe bude rozhodovat, kolik energie se tímto způsobem dá uchovat a po jak dlouhou dobu. Z dosud provedených pokusů vyplývá, že ve spojení se solárním panelem 50 dvoucentimetrových cihliček umožní napájet nouzové osvětlení po dobu pěti hodin. Parametry superkapacitoru na bázi cihel by měly být: Plošná kapacita 1,60 F cm −2. Hustota energie 222 µWh cm −2 při proudové hustotě 0,5 mA cm −2. Není to nic světoborného, ale když vezmeme v potaz, že by podle autorů nemělo jít o složitou, ani nákladově náročnou úpravu cihel, která by stavbu neměla výrazně prodražovat, a že rodinný domek představuje okolo 30 000 klasických cihel, nemuselo by jít o špatný nápad.
Ještě zbývá dodat, že aby se cihly nezkratovaly, vyvinuli vědci k jejich separaci speciální gel z vinylalkoholu a jedno molární kyseliny sírové. Uvedená kombinace vykonává funkci, jak elektrolytu, tak i separátoru. Vnější ochranu a vodě odolnost tomu všemu pak dodává nástřik pryskyřicí.
I když se jedná o soustavu kondenzátorů, výsledkem je něco, co se po vhodném propojení svou funkcí baterii hodně podobá. Má to dokonce i nějaké přednosti. Lze to například velmi rychle (v řádu sekund) nabít i vybít. Zachová si to svou počáteční kapacitu po mnoho tisíc nabíjecích cyklů. I po deseti tisících cyklech zůstává na 90 %. Kladem takové „baterie“ by bylo, že by pracovala efektivně při teplotách od -20 do + 60 °C. To, že cihlový kondenzátor lze dobíjet i sto tisíckrát za hodinu, je výhodou například ve spojení s mikroelektronickými senzory. A tak kdo ví, možná se v použití cihel u rodinných domků dočkáme jisté renesance. Architektům by měly být schopny nabídnout trochu víc, než beton.
Literatura
Hongmin Wang et al.: Energy storing bricks for stationary PEDOT supercapacitors, Nature Communications (2020). DOI: 10.1038/s41467-020-17708-1 , www.nature.com/articles/s41467-020-17708-1
News Washington University in St.Louis https://source.wustl.edu/2020/08/storing-energy-in-red-bricks/
Zimní radovánky: Praktická nanotechnologie vyrábí elektřinu ze sněhu
Autor: Stanislav Mihulka (16.04.2019)
Rzivá elektřina? Stačí pustit slanou vodu skrz ultratenké vrstvy rzi
Autor: Stanislav Mihulka (01.08.2019)
Pokročilá recyklace: Mikrovlny vykouzlí z PET lahví materiál pro baterie
Autor: Stanislav Mihulka (28.04.2020)
Může být shoda na energetické koncepci v Česku?
Autor: Vladimír Wagner (06.07.2020)
Průlomová kapalná kovová baterie pracuje v pokojové teplotě
Autor: Stanislav Mihulka (08.07.2020)
Diskuze: