Jedním z nejzajímavějších objevů, který se podařil pomocí detekce gravitačních vln, je potvrzení toho, že srážky neutronových hvězd jsou zodpovědné za krátké záblesky gama. Současné pozorování gravitačních vln ze splynutí neutronových hvězd a krátkého záblesku gama 17. srpna 2017 bylo možné pozorovat v celé oblasti elektromagnetického spektra. Prokázaly se tak naše představy o této události a zároveň i skutečnost, že by to mohl být spolu se supernovami nejdůležitější zdroj těžkých prvků ve vesmíru, tedy třeba zlata, platiny a uranu. Zároveň se potvrdilo, že se při této srážce vytváří extrémně horká jaderná hmota.
Vlastností extrémně husté a horké jaderné hmoty lze studovat pomocí srážek těžkých jader. Ty si můžeme představit jako kapičky jaderné hmoty, která se při srážce ohřeje a stlačí. Vzniká tak hmota různě horká v závislosti na míře urychlení jader a geometrii srážky. Při extrémních urychleních a teplotách vzniká úplně nová fáze jaderné hmoty – kvark-gluonové plazma. Ta zde byla v prvních mikrosekundách po vzniku našeho Vesmíru. Při nižších teplotách je hmota složená z nukleonů (protonů a neutronů) a jim podobných částic. A právě v těchto oblastech teplot pracuje experiment HADES (High Acceptance Di-Electron Spectrometer), který k urychlení jader využívá urychlovač SIS v ústavu GSI Darmstadt v Německu. Jádra zde získávají rychlosti a energie vhodné pro produkci jaderné hmoty o teplotě podobné té, která vzniká při srážce neutronových hvězd. Tedy v řádu stovek miliard stupňů. Urychlovač jádra urychlí a pošle je na pevný terč, kde ke srážkám dochází, a můžeme je tak posléze studovat.
Experiment HADES
Experiment HADES je dominantně určen pro studium párů elektronu a pozitronu (antičástice k elektronu), které vznikají při srážkách těžkých jader. Jde o velmi citlivou sondu, která umožňuje studovat vlastnosti vzniklé horké a husté jaderné hmoty v různých fázích jejího vzniku a následného vývoje, který je provázen jejím rozpínáním a chladnutím. Výhodou detekce elektronů a pozitronů je, že neinteragují silnou interakcí a nejsou po svém vzniku okolní jadernou hmotou ovlivněny. Nesou tak originální informaci z hmoty v době jejich vzniku. Silně interagující částice, které vznikají v o mnoho řádů větším počtu, jsou pozdější interakcí velice silně ovlivněny a původní informace se u nich ztrácí. Tyto částice se označují jako hadrony, a patří mezi ně i známé protony a neutrony.
Zachycení a hlavně přesná identifikace elektronů a pozitronů na pozadí extrémně velkého počtu hadronů je velmi náročnou záležitostí. Ve spektrometru HADES to umožňuje celá soustava detektorů. Tím klíčovým je čerenkovovský detektor. Ten využívá toho, že elektrony a pozitrony jsou oproti hadronům mnohonásobně lehčí. Při energiích, které při zkoumaných srážkách vznikají, tak pouze právě elektrony a pozitrony mají rychlosti extrémně blízké rychlosti světla ve vakuu. Hadrony mají rychlosti o dost nižší. Pokud vybereme vhodnou látku, v našem případě jde o vybraný plyn za přesně daného tlaku, tak pouze právě elektrony a pozitrony v něm budou mít rychlost větší, než je rychlost světla v tomto mediu. A jenom ony tak budou vyzařovat čerenkovovské záření. Elektricky nabitá částice, která má v látce rychlost větší, než je rychlost světla v ní, totiž vyzařuje světlo v definovaném úhlu vůči směru svého pohybu. V detektoru RICH (Ring Imaging Cherenkov detector) tak pouze elektrony a pozitrony vytvářejí světelné kroužky odrážené zrcadlem do CCD zobrazovače.
Úhel směru vyzařování čerenkovovského světla je sice dán rychlostí a tedy i hybností a energií zaznamenaného elektronu, ale určení těchto veličin z něj je značně nepřesné. Proto má HADES pro určení hybnosti elektronů a pozitronů magnetický spektrometr. Ten se skládá ze supravodivého magnetu a dvou stěn dráhových detektorů před ním a dvěma za ním. Nejdříve se určí směr pohybu částice před magnetem, pak magnet změní v závislosti na hybnosti směr jejího pohybu a určí se dráha po této změně. Tak lze velice přesně určit její hybnost.
Pro další zpřesnění identifikace částic vzniklých při srážce jsou v systému další detektory, které umožňují určovat dobu letu částice a z ní i její rychlost. Stejně tak je zde systém detektorů umístěných v místech blízkých k původnímu směru letu jader svazku. Ty zachycují trosky původních jader a umožňují tak zjistit, jaká byla geometrie dané srážky, jaký objem jaderné hmoty vznikl a jaké tak mohly být i dosažené teploty. A právě tyto sestavy detektorů dodala česká část spolupráce HADES. Čeští fyzikové a hlavně studenti z Ústavu jaderné fyziky AV ČR, Matematicko-fyzikální fakulty Univerzity Karlovy, Fakulty jaderné a fyzikálně inženýrské ČVUT i dalších českých vědeckých institucí jsou totiž jednou z velmi významných součástí tohoto vědeckého týmu. Podrobný popis detektorové sestavy HADES, výzkumů, které umožňuje, i české účasti lze nalézt v článku v časopise Vesmír.
Co nám řeknou elektron pozitronové páry?
Proč se vlastně tak složité zařízení pro detekci elektron pozitronových párů vybudovalo? Jak už bylo zmíněno, elektrony a pozitrony interagují elektromagneticky, ale neinteragují silně. Nejsou tak ovlivněny následnou interakcí v jaderném médiu, kterým prolétají. Vznikají rozpadem velmi zajímavých hadronů, vektorových mezonů, které mohou měnit své vlastnosti uvnitř jaderné hmoty. Třeba zmenšit svou klidovou hmotnost. Pár elektronu a pozitronu, který při jejich rozpadu vznikl, nám umožňuje tuto hmotnost určit a studovat tuto změnu a tím i exotické vlastnosti silné jaderné interakce.
Umožňuje také „detekovat“ virtuální fotony. Žádné virtuální částice pozorovat přímo nedokážeme. Ovšem některé virtuální fotony se mohou přeměnit na reálný pár elektronu a pozitronu. Ten můžeme zachytit a určit pomoci něj zároveň informaci o virtuálním fotonu. A právě taková měření reálných párů elektronu a pozitronu vzniklých z virtuálních fotonů byla využita pro studium vlastností horké a husté jaderné hmoty podobné té, která se objevuje při srážce neutronových hvězd. Právě emise „tepelných virtuálních“ fotonů a z nich vzniklých párů elektron pozitron nese informaci o teplotě v době jejich vzniku a umožňuje nám vlastně získat teploměr i pro tak horké médium s teplotou v řádu stovek miliard stupňů.
Studium jaderné hmoty při kolizích neutronových hvězd i jader
Detekce elektron pozitronových párů vznikajících prostřednictvím termálních virtuálních fotonů není jednoduchou záležitostí. Jejich množství je malé a navíc je třeba je identifikovat na pozadí velkého množství dalších jejich zdrojů, například mezonů ró a jiných. I to je důvod, proč se to podařilo až nyní při srážkách zlata se zlatem a s využitím zkušeností z předchozích experimentů, které se prováděly i s dalšími dvojicemi jader. Umožnila to velmi vysoká dosažena hustota srážek a také velice efektivní výběr těch zajímavých srážek s přítomností párů elektron a pozitron k zápisu. Při tomto výběru se využily i prvky umělá inteligence.
Přesné určení teploty je jedním ze zásadních parametrů zkoumané jaderné hmoty a její určení je tak velmi důležité. V daném případě musíme měřit hodnoty, které se pohybují okolo 800 miliard stupňů. Zkoumání dalších vlastností hmoty podobné té z neutronových hvězd při jejich srážce nám umožní lépe modelovat průběh tohoto děje a následně i procesy, které vedou ke vzniku záblesku gama, produkci těžkých prvků (i těch supertěžkých) a emisi vysokoenergetického záření.
Nedávné otevření možnosti detekce gravitačních vln při splynutí neutronových hvězd a potvrzení jeho souvislosti s krátkým zábleskem gama umožňuje studovat tento jev ve vesmíru. Objev spolupráce HADES, na kterém jsem se mohl podílet i s dalšími českými fyziky a hlavně studenty, umožňuje studovat hmotu vznikající při této události v pozemské laboratoři. Výsledkům se věnuje článek v časopise Nature Physics.
Experiment HADES by se měl přesunout i na větší systém urychlovačů FAIR, na kterém se v laboratoři GSI Darmstadt pracuje. On a jeho následovník v podobě detektorového systému CBM bude studovat jadernou hmotu ještě v širší oblasti teplot a hustot a daleko detailněji. I na tomto výzkumu s využitím zařízení FAIR se budou čeští fyzikové intenzivně podílet. V následujících letech tak můžeme čekat v oblasti poznání velmi horké a husté hmoty ve vesmíru zásadní průlomy. Nasvědčuje tomu i letošní běh detektorů gravitačních vln, který začal v dubnu. Detekuje se stále více černých děr a podařilo se zachytit i další dvě splynutí dvou neutronových hvězd a 14. srpna dokonce splynutí neutronové hvězdy a černé díry. Ale o tom zase až někdy příště.
Video: Procházka kolem spektrometru HADES (autor videa Petr Chudoba):
Diskuze: